
## Централизованное тестирование по математике, 2015

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

**1.** На координатной прямой отмечены точки O, A, B, C, D, F.

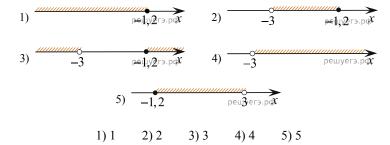


Если координата точки A равна  $\frac{10}{9}$ , то числу 1 на координатной прямой соответствует точка:

- 1) *Q* 2) B = 3) C = 4) D = 2
- **2.** Запишите  $(2^x)^y$  в виде степени с основанием 2.

  - 1)  $2^{xy}$  2)  $2^{2x+2y}$  3)  $2^{2xy}$  4)  $2^{\frac{x}{y}}$  5)  $2^{x+y}$

**3.** Арифметическая прогрессия  $(a_n)$  задана формулой n-го члена  $a_n = 2n + 5$ . Найдите разность этой прогрессии.


- 2) -2 3) 2 4) -3

4. Укажите номер рисунка, на котором изображены фигуры, симметричные относительно точки Q.

## 1) 1 2) 2 3)3 5) 5

- **5.** Вычислите  $\frac{2148 \cdot 0,01-5}{0,34+1,26}$ .
- 2) 13
  - 3) 103 4) 10.3
- 5) 1.3

6. Укажите номер рисунка, на котором показано множество решений системы неравенств



7. Точки А, В, С разделили окружность так, что градусные меры дуг АВ, ВС, СА в указанном порядке находятся в отношении 6:7:5. Найдите градусную меру угла АВС.

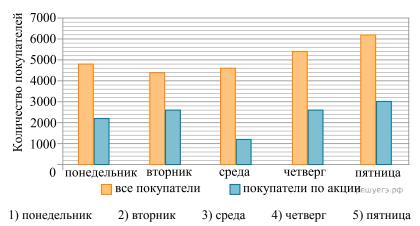
- 1) 100°
- 2) 60°

3)  $70^{\circ}$  4)  $50^{\circ}$  5)  $120^{\circ}$ 

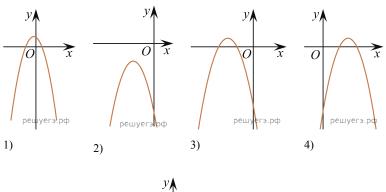
**8.** Даны числа: 0.0038;  $0.38 \cdot 10^8$ ;  $38 \cdot 10^{-5}$ ; 3800;  $3.8 \cdot 10^2$ . Укажите число, записанное в стандартном виде.

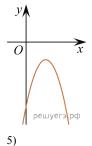
- 1) 0.0038 2)  $0.38 \cdot 10^8$  3)  $38 \cdot 10^{-5}$  4) 3800 5)  $3.8 \cdot 10^2$

**9.** Результат упрощения выражения  $\frac{a^2 + 5a}{a + 2} + \frac{6a}{a^2 + 2a}$  имеет вид:


- 1) a-3 2)  $\frac{(a-3)(a-2)}{a+2}$  3) a+3 4)  $\frac{a^2+11a}{a^2+3a+2}$  5)  $\frac{a^2+7a+22}{2(a+2)}$

**10.** Значение выражения  $\sqrt[4]{1\frac{1}{81}}: \sqrt[4]{82}$  равно:


1)  $\frac{4}{3\sqrt[4]{82}}$  2) 3 3)  $\frac{1}{82}$  4)  $\frac{3}{4\sqrt[4]{82}}$  5)  $\frac{1}{3}$ 


5)  $2^x = 16$ 

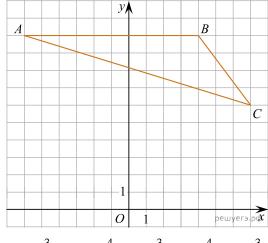
**11.** На диаграмме показано количество покупателей в период проведения акции в магазине. В какой день количество покупателей товара по акции составило менее 30% от количества всех покупателей в этот день?

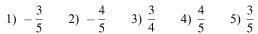


**12.** Укажите номер рисунка, на котором представлен эскиз графика функции  $y = 1 - (x - 2)^2$ .






**13.** Уравнение  $\frac{3x-2}{4}+1=x-\frac{8-x}{4}$  равносильно уравнению:


авнение 
$$\frac{1}{4} + 1 = x - \frac{1}{4}$$
 равносильно уравнению:  
1)  $5^x = 1$  2)  $5^x = 5$  3)  $2^x = 32$  4)  $3^x = 9$ 

**14.** Собственная скорость катера в 10 раз больше скорости течения реки. Расстояние по реке от пункта A до пункта B плот проплыл за время  $t_1$ , а катер — за время  $t_2$ . Тогда верна формула:

1) 
$$t_1 = 12t_2$$
 2)  $t_1 = 11t_2$  3)  $t_1 = 10t_2$  4)  $t_1 = 10,5t_2$  5)  $t_1 = 11,5t_2$ 

**15.** На координатной плоскости изображен тупоугольный треугольник ABC с вершинами в узлах сетки (см. рис.). Косинус угла ABC этого треугольника равен:





**16.** Из полного бокала, имеющего форму конуса высотой 15, отлили треть (по объему) жидкости. Вычислите  $\frac{1}{2}h^3$ , где h — высота оставшейся жидкости.

**17.** График функции, заданной формулой y = kx + b, симметричен относительно оси Oy и проходит через точку  $A\left(\frac{1}{2};2\right)$ . Значение выражения k+b равно:

1) 4 2) 1 3) 
$$-1\frac{1}{2}$$
 4)  $2\frac{1}{2}$  5) 2

- **18.** Высоты остроугольного равнобедренного треугольника ABC (AB = BC) пересекаются в точке O. Если высота AD = 8 и AO = 5, то длина стороны AC равна:
  - 1)  $4\sqrt{5}$  2)  $\sqrt{89}$  3)  $4\sqrt{10}$  4) 10 5)  $2\sqrt{5}$
- **19.** Витя купил в магазине некоторое количество тетрадей, заплатив за них 45 тысяч рублей. Затем он обнаружил, что в другом магазине тетрадь стоит на 2 тысячи рублей меньше, поэтому, заплатив такую же сумму, он мог бы купить на 6 тетрадей больше. Сколько тетрадей купил Витя?
  - **20.** Найдите наибольшее целое решение неравенства  $9^{x+11} \cdot 10^{-x-10} > 7,29$ .
- **21.** Найдите модуль разности наибольшего и наименьшего корней уравнения  $(2x^2 + 3x 11)^2 = (5x + 1)^2$ .
  - **22.** Пусть  $(x_1; y_1)$ ,  $(x_2; y_2)$  решения системы уравнений  $\begin{cases} x^2 + 2x = 12 + 3y, \\ 2x 3y = 3. \end{cases}$  Найдите значение выражения  $x_1y_2 + x_2y_1$ .
- **23.** Найдите сумму корней (корень, если он единственный) уравнения  $\sqrt{x^2-x}+\sqrt{4-x}=\sqrt{x+15}+\sqrt{4-x}$ .
  - **24.** Найдите сумму целых решений неравенства  $\frac{(x^2+5x+4)(x-3)^2}{1-x^2} \geqslant 0$ .
- **25.** Каждое боковое ребро четырехугольной пирамиды образует с ее высотой, равной  $6\sqrt{2}$ , угол 30°. Основанием пирамиды является прямоугольник с углом 30° между диагоналями. Найдите объем пирамиды V, в ответ запишите значение выражения  $\sqrt{2} \cdot V$ .
  - **26.** Найдите (в градусах) наибольший отрицательный корень уравнения  $\sin^2\left(3x \frac{\pi}{6}\right) = 1$ .
  - **27.** Найдите количество корней уравнения  $\sin x = \frac{x}{10\pi}$ .
- **28.** В прямоугольнике ABCD выбраны точки L на стороне BC и M на стороне AD так, что ALCM ромб. Найдите площадь этого ромба, если AB = 10, BC = 20.
  - **29.** Пусть  $A = (\log_2 5 + \log_5 2 2)^{0.5} \cdot (\log_{2.5} 5 \cdot \log_2^{0.5} 5 \log_2^{1.5} 5) + 4\log_4^2 5$ . Найдите значение выражения  $2^A$ .
- **30.** Найдите сумму всех трехзначных чисел, которые при делении на 4 и на 6 дают в остатке 1, а при делении на 9 дают в остатке 7.